
NASA-IVV-97-016

NASA IV&V Facility, Fairmont, West Virginia

A Framework for Performing Verification and Validation in Reuse

Based Software Engineering

Edward A. Addy

November 11, 1997

This technical report is a product of the National Aeronautics and Space Administration

(NASA) Software Program, an agency wide program to promote continual improvement

of software engineering within NASA. The goals and strategies of this program are

documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the

World Wide Web site http:llwww.ivv.nasa.govl

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU

Software Research Laboratory.

Article to be published in the Annals of Software Engineering,

Special Volume on Reuse, 1998

A Framework for Performing Verification and Validation in

Reuse-Based Software Engineering

Edward A. Addy

NASA/WVU Software Research Laboratory

NASA/WVU Software IV&V Facility

100 University Drive

Fairmont, WV 26554 USA

eaddy@wvu.edu

Verification and Validation (V&V) is currently performed during

application development for many systems, especially safety-critical and mission-

critical systems. The V&V process is intended to discover errors, especially

errors related to critical processing, as early as possible during the development

process. The system application provides the context under which the software

artifacts are validated.

This paper describes a framework that extends V&V from an individual

application system to a product line of systems that are developed within an

architecture-based software engineering environment. This framework includes

the activities of traditional application-level V&V, and extends these activities

into domain engineering and into the transition between domain engineering and

application engineering. The framework includes descriptions of the types of

activities to be performed during each of the life-cycle phases, and provides

motivation for the activities.

1. INTRODUCTION

The implementation of reuse-based software engineering not only introduces new

activities to the software development process, such as domain analysis and domain modeling, it

also impacts other aspects of software engineering. Other areas of software engineering that are

affected include Configuration Management, Testing, Quality Control, and Verification and

Validation (V&V). Activities in each of these areas must be adapted to address the entire domain

or product line rather than a specific application. This paper discusses changes and

enhancements to V&V methods that provide a framework for performing V&V within reuse-

based software engineering.

V&V methods are used to increase the level of assurance of critical software, particularly

that of safety-critical and mission-critical software. Software V&V is a systems engineering

discipline that evaluates software in a systems context [Wallace and Fujii 1989a]. The V&V

methodology has been used in concert with various software development paradigms, but always

in the context of developing a specific application system. However, the reuse-based software

development process separates domain engineering from application engineering in order to

develop generic reusable software components that are appropriate for use in multiple

applications.

The Glossary of Software Reuse Terms published by the National Institute of Standards

and Technology [Katz et al. 1994] defines a domain as a distinct functional area that can be

supported by a class of software systems with similar requirements and capabilities. Domain

analysis is defined as the process by which information used in developing software systems is

identified, captured, and organized so that it can be reused to create new systems within a

domain. Domain analysis results in a model of the domain, and ultimately in a domain

architecture. If the domain corresponds to a line of products, which it often does, the domain

architecture is used to guide the development of repeated application systems within the domain.

This view is consistent with that of the Defense Advanced Research Project Agency Domain-

Specific Software Architecture program [Armitage 1993].

The earlier a problem is discovered in the development process, the less costly it is to

correct the problem. To take advantage of this, V&V begins verification within system

Framework for V&V in Reuse-Based Software Engineering 2

applicationdevelopmentat the conceptor high-level requirements phase. However, a reuse-

based software development process has tasks that are performed earlier, and possibly much

earlier, than high-level requirements for a particular application system.

In order to bring the effectiveness of V&V to bear within a reuse-based software

development process, V&V must be incorporated within the domain engineering process.

Failure to incorporate V&V within domain engineering will result in higher development and

maintenance costs due to losing the opportunity to discover problems in early stages of

development and having to correct problems in multiple systems already in operation. Also, the

same V&V activities will have to be performed for each application system having mission or

safety-critical functions.

On the other hand, it is not possible for all V&V activities to be transferred into domain

engineering, since verification extends to the installation and operation phases of development

and validation is primarily performed using a developed system. This leads to the question of

which existing (and/or new) V&V activities would be more effectively performed in domain

engineering rather than in (or in addition to) application engineering. Related questions include

how to identify the reusable components for which V&V at the domain level would be cost-

effective, and how to determine the level to which V&V should be performed on the reusable

components.

This paper describes a framework for performing V&V within reuse-based software

engineering. The framework identifies V&V tasks that could be performed in domain

engineering, V&V tasks that could be performed in the transition from domain engineering to

application engineering, and the impact of these tasks on application V&V activities. The

criteria and motivation for performing V&V in domain engineering are also considered.

2. VERIFICATION AND VALIDATION IN TRADITIONAL SYSTEM APPLICATION

ENGINEERING

V&V has been performed during application system development, within the context of

many different development methodologies, including waterfall, spiral, and evolutionary

development. V&V is a set of activities performed in parallel with system development and

designed to provide assurance that a software system meets the operational needs of the user. It

ensures that the requirements for the system are correct, complete, and consistent, and that the

life-cycle products correctly implement system requirements.

The term verification refers to the process of determining whether or not the products of

a given phase of the software development cycle fulfill the requirements established during the

previous phase, while validation is the process of evaluating software at the end of the software

development process to ensure compliance with software requirements [IEEE Std 610.12-1990].

Verification is intended to ensure that the product is built correctly, while validation assures that

the correct product is built.

While verification and validation have separate definitions, in practice the activities are

merged into a single process. This process evaluates software in a systems context, using a

structured approach to analyze and test the software against system functions and against

hardware, user and other software interfaces [Wallace and Fujii 1989a]. V&V is also described

as a series of technical and management activities performed to improve the quality and

Framework for V&V in Reuse-Based Software Engineering 3

reliability of that system and to assure that the delivered product satisfies the user's operational

needs [Lewis 1992].

V&V activities are designed to be independent of but complementary to the activities of

the development and test teams. Where the development team is usually focused on nominal

performance and the testing is usually based on requirements and operational profiles, V&V

includes analysis and tests on critical and off-nominal behavior throughout all phases of the

development lifecycle. V&V activities also complement the activities of the configuration

management and quality assurance groups rather than being a duplicate or replacement of these

activities [Wallace and Fujii 1989b].

A set of minimal and optional V&V activities is defined in the IEEE Standard for

Software Verification and Validation Plans [1986 (R 1992)]. The minimum V&V tasks for

critical software are shown in Figure 1.

• Management of V&V

• Concept Phase V&V

• Requirements Phase V&V

• Design Phase V&V

• Implementation Phase V&V

• Test Phase V&V

• Installation and Checkout Phase V&V

• Operations and Maintenance Phase V&V

V&V is performed as a part of a risk mitigation strategy for application systems. The

risks can be in areas such as safety, security, mission, finance, or reputation. The scope and level

of V&V can vary with each project, based on the criticality of the system and on the role of

software in accomplishing critical functions of the system [Makowsky 1992]. V&V determines

the software involved in high-risk areas, and V&V activities are focused on this critical software.

Criticality analysis is used to determine not only the critical software, but also the level of

intensity to which each V&V task should be performed on various portions of the critical

software [IEEE Std 1059-1993].

3. DIFFERENCES BETWEEN V&V AND COMPONENT CERTIFICATION

Much work has been done in the area of component certification, which is also called

evaluation, assessment, or qualification. These terms can have slightly different meanings, but

refer in general to rating a reusable component against a specified set of criteria.

Reuse libraries often use levels to indicate the degree to which a component has been

evaluated by the library. The Asset Source for Software Engineering Technology (ASSET)

library and the Army Reuse Center library both have four levels of certification, although the use

of the term "levels" is operationally different in the two libraries [Poore et al. 1992].

Component-based libraries evaluate reusable components against criteria such as reusability,

evolvability, maintainability, and portability, as well as expending various levels of effort to

ensure the component meets its specification.

The Certification of Reusable Software Components Program at Rome Laboratory has

proposed a certification framework based on removing defects from candidate reusable

Framework for V&V in Reuse-Based Software Engineering 4

PHASE TASKS

Management

Concept

Requirements

Design

Implementation

Test

Installation and

Checkout

Operations and
Maintenance

Software Verification and Validation Plan Generation

Baseline Change Assessment

Management Review

Review Support

Concept Documentation Review

Software Requirements Traceability Analysis

Software Requirements Evaluation

Software Requirements Interface Analysis

System Test Plan Generation

Acceptance Test Plan Generation
Design Traceability Analysis

Design Evaluation

Design Interface Analysis

Component Test Plan Generation

Integration Test Plan Generation

Test Design Generation

• component testing

• integration testing

• system testing

• acceptance testing

Source Code Traceability Analysis
Source Code Evaluation

Source Code Interface Analysis
Source Code Documentation Evaluation
Test Case Generation

• component testing

• integration testing

• system testing

• acceptance testing
Test Procedure Generation

• component testing

• integration testing

• system testing

Component Test Execution
Test Procedure Generation

• acceptance testing

Integration Test Execution

System Test Execution

Acceptance Test Execution

Installation Configuration Audit

V&V Final Repo,,rt_,,Generation
Software V&V Plan Revision

Anomaly Evaluation

Proposed Change Assessment
Phase Task Iteration

Figure 1: Minimum V&V Tasks for Critical Software in Application Engineering

Framework for V&V in Reuse-Based Software Engineering 5

components [Software Productivity Solutions 1996]. This certification process consists of four

levels of analysis and testing, each designed to remove certain categories of defects from the

reusable component. The levels of analysis and testing correspond to more stringent levels of

certification, which are composed of the factors of scope and confidence.

The Comprehensive Approach to Reusable Defense Software (CARDS) library is a

model-based library based on a generic architecture. Reusable components are evaluated not

only on the same general criteria as that of component-based libraries, but also on the "form, fit,

and function" relative to the generic architecture [Unisys and EWA 1994]. The CARDS library

uses this difference to draw a distinction between "certification" and "qualification". The

Component Providers and Tool Developers Handbook defines component certification as "The

process of determining if a component being considered for inclusion in a library meets the

requirements of the library and passes all testing procedures. Evaluation takes place against a

common set of criteria (reusability, portability, etc.)." Component qualification is defined as

"The process of determining if a potential component is appropriate to the library and meets all

quality requirements. Evaluation takes place against domain criteria."

The common thread through all of these certification processes is the focus on the

component rather than on the systems in which the component will eventually be (re)used. Dunn

and Knight [1993] note that with the exception of the software industry itself, customers

purchase systems and not components. Ensuring that components are well designed and reliable

with respect to their specifications is necessary but not sufficient to show that the final system

meets the needs of the user. Component evaluation is but one part of an overall V&V effort,

analogous to code evaluation in V&V of an application system.

Another distinction between V&V and component certification is the scope of the

artifacts that are considered. While component certification is primarily focused on the

evaluation of reusable components (usually code-level components), V&V also considers the

domain model and the generic architecture, along with the connections between domain artifacts

and application system artifacts. Some level of component certification should be performed for

all reusable components, but V&V is not always appropriate. V&V should be conducted at the

level determined by an overall risk mitigation strategy.

4. JUSTIFICATION FOR PERFORMING V&V WITHIN DOMAIN ENGINEERING

Studies have shown that the cost and difficulty of correcting an error increases

dramatically as the error is discovered in later life-cycle phases [Makowsky 1992]. V&V

addresses that issue in traditional system development through activities that begin in the concept

or high-level requirements phase and continue throughout all life-cycle phases. The V&V

activities are focused on high-risk areas, so that errors in the high-risk areas can be discovered in

time to evolve a complete and cost effective solution rather than forcing a makeshift solution due
to schedule constraints.

Within reuse-based software engineering, software engineering activities may be

performed prior to the concept phase of a particular application system. In order to extend the

benefit of early error detection to reuse-based software engineering, V&V must be

incorporated within the domain engineering process. Performing V&V at the domain level may

also reduce the level of effort required to perform V&V in the individual application systems.

Framework for V&V in Reuse-Based Software Engineering 6

Although softwareis the targetof V&V activities, V&V recognizesthat softwaredoes
not executein isolation,but is an integral part of a system[Duke 1989]. In order to provide
assurancethat critical functionswill be performedcorrectly,softwaremust beevaluatedwithin
thecontextin which the softwarewill execute. In reuse-basedsoftwareengineering,the context
for V&V mustbeprovidedby thedomainmodelanddomainarchitecture.

5. FRAMEWORK FOR PERFORMING V&V WITHIN REUSE-BASED SOFTWARE

ENGINEERING

One model for reuse-based software engineering is the Two Life-Cycle Model shown in

Figure 2, developed by the U.S. Department of Defense Software for Adaptable, Reliable

Systems (STARS) program. This model assumes a domain-specific, architecture-centered

approach to software reuse. The domain model describes the problem space of the domain, and

expresses requirements. The domain architecture describes the solution space of the domain,

while the domain components are intended to be used within application systems to meet the
functions described in the domain architecture.

A draft framework for performing V&V within reuse-based software engineering is

formed by adding V&V activities to the STARS Two Life-Cycle Model. The application-level

IV&V tasks described in IEEE STD 1012 serve as a starting point. Domain-level tasks are added

to link life-cycle phases in the domain level, and transition tasks are added to link application

phases with domain phases. This draft framework was refined by a working group at Reuse '96

[Addy 1996], and the resultant framework is shown in Figure 3. The specific tasks of each phase

at the domain and transition levels are listed in Figure 4.

Domain-level V&V tasks are performed to ensure that domain products fulfill the

requirements established during earlier phases of domain engineering. Transition- level tasks

provide assurance that an application artifact correctly implements the corresponding domain

artifact. Traditional application-level V&V tasks ensure the application products fulfill the

requirements established during previous application life-cycle phases.

Performing V&V tasks at the domain and transition levels will not automatically

eliminate any V&V tasks at the application level. However, it might be possible to reduce the

level of effort for some application-level tasks. The reduction in effort could occur in a case

where the application artifact is used in an unmodified form from the domain component, or

where the application artifact is an instantiation of the domain component through parameter

resolution or through generation.

Domain maintenance and evolution are handled in a manner similar to that described in

the operations and maintenance phase of application-level V&V. Changes proposed to domain

artifacts are assessed by V&V to determine the impact of the proposed correction or

enhancement. If the assessment determines that the change will impact a critical area or function

within the domain, appropriate V&V activities are repeated to assure the correct implementation

of the change.

Although not shown as a specific V&V task for any particular phase of the life-cycle,

criticality analysis is an integral part of V&V planning. Criticality analysis is performed in V&V

of application development in order to allocate V&V resources to the most important (i.e.,

critical) areas of the software [IEEE Std 1059-1993]. This assessment of criticality and the

ensuing determination of the level of intensity for V&V tasks are crucial also within reuse-based

Framework for V&V in Reuse-Based Software Engineering 7

Domain Management

Existing
System

Artifacts

f : : :i:::D6main:Efi_neering : i

DOmain_[Domain _1 Domain H[

I Analysis : I Design Implementation

L ...Domain [] _:: : :::::::::_Domain [-] Domain]J

Model l Architecture / Components

New System

Requirements System
Analysis Design

Application Engineering

System

Implementation

New

System

Figure 2: STARS Two Life-Cycle Model

Domain Management

Domain Engineering
New and

Domain Domain Domain
Existing

Artifacts and Analysis Design Implementation

Requirements Domain Domain Domain
(Domain Model .'omponents

Concepts)

System Requirements System . System
Requirements Analysis Design Implementation

(Common and System System New
Unique) _ecification System

--_" Development S!!:II:-- !

-_=== Verification Engineering

-_1 Validation

Correspondence
Program Management

Figure 3: Framework for V&V within Reuse-Based Software Engineering

Framework for V&V in Reuse-Based Software Engineering 8

LEVEL PHASE

Domain

Engineering

Domain

Analysis

Domain Design

Domain

Implementation

TASKS

Validate Domain Model

Model Evaluation

Requirements Traceability Analysis (especially

forward traceability for completeness)

Verify Domain Architecture

Design Traceability Analysis

Design Evaluation

Design Interface Analysis

Component Test Plan Generation

Component Test Design Generation

Verify and Validate Domain Components

Component Traceability Analysis

Component

Component

Component

Component

Component

Evaluation

Interface Analysis

Documentation Evaluation

Test Case Generation

Test Procedure Generation

Transition Requirements

Design

Implementation

Component Test Execution

Correspondence Analysis between System

Specification and Domain Model

Correspondence Analysis between System
Architecture and Domain Architecture

Correspondence Analysis between System

Implementation and Domain Components

Figure 4: V&V Tasks for Life-Cycle Phases at the Domain and Transition Levels

software engineering. Not all domain products will be used in critical application systems, and

some of those used in critical application systems may not be in a critical area of the software.

Some reusable components may be used in multiple systems, but may be a part of the critical

software in only one or two of the systems. V&V should be performed only on domain products

that are involved in the critical software in one or more application systems, and V&V tasks

should be performed at a level of intensity appropriate to the level of criticality. Determining the

domain products for which to perform V&V, and the appropriate level of intensity for the V&V

tasks, is complicated by the use of the products in multiple systems, some of which may only be

in early stages of planning. If a component is used in only one critical application system, it may

be more cost-effective to perform V&V during application engineering for that system rather

than during domain engineering. Extension of criticality analysis from application engineering to

domain engineering is an important, but not yet well-defined, area of this framework.

5.1 Domain-Level Tasks

The domain-level tasks are analogous to the application-level tasks, in that the products

of each phase are evaluated against the requirements specified in the previous stage and against

Framework for V&V in Reuse-Based Software Engineering 9

theoriginal user requirements. The domain-level tasks can be divided into the three phases of

domain analysis, domain design, and domain implementation, which correspond to the

application phases of requirements, design, and implementation.

During domain analysis V&V, the V&V team should ensure that the domain model is an

appropriate representation of the user requirements. (The singular term "model" is not intended

to imply that only one model will be constructed; this term is used to mean the one or more

models that express the domain requirements.) Note that ensuring that user requirements are

satisfied implies that the requirements in the domain must be explicitly stated. Criticality

analysis is performed to ensure that high risk requirements are appropriately addressed, either

mission-critical requirements or those related to properties such as safety and security. The

criticality analysis should also determine critical functions that will be performed by software.

The domain model is evaluated to ensure that the requirements are consistent, complete, and

realistic, especially in the high risk areas. The model is evaluated to determine responses to error

and fault conditions and to boundary and out-of-bounds conditions. As the domain engineering

progresses into later phases, the requirements are traced forward. This will allow evaluation of

the impact of changes to the domain artifacts.

Domain design V&V tasks focus on ensuring that the domain architecture satisfies the

requirements expressed in the domain model. Each requirement in the domain model should

trace to one or more items in the domain architecture (forward traceability), and each item in the

domain architecture should trace back to one or more requirements in the domain model (reverse

traceability). The domain architecture is evaluated to ensure that it is consistent, complete, and

realistic. Interfaces between components are evaluated to ensure that the architecture supports

the necessary communication between components in the architecture, users, and external

systems. Planning and design of component testing are performed during this phase. The

component testing should include error and fault scenarios, functional testing of critical

activities, and response to boundary and out-of-bounds conditions.

Domain Implementation V&V tasks ensure that the domain components satisfy the

requirements of the domain architecture and will satisfy the original user requirements. The

components should have a forward and reverse tracing with the domain architecture.

Components that are involved with performing critical actions should receive careful

consideration. The interface implementation, both within components of the architecture and

with systems outside the architecture, is evaluated to ensure that it meets the requirements of the

domain architecture. Component test cases and test procedures are generated, and component

testing is performed.

Integration test activities are explicitly omitted from the domain-level tasking, since

integration testing is oriented toward application-sPecific testing. Some form of integration

testing might be appropriate within domain-level V&V in the case where the architecture calls

for specific domain components to be integrated in multiple systems. This limited form of

integration testing could be done along with the component testing activities.

5.2 Correspondence Tasks

Correspondence analysis is a term not found in IEEE STD 1012. The term is used within

this paper to describe the activities that are performed to provide assurance that an application

artifact corresponds to a domain artifact; i.e., the application artifact is a correct implementation

of the domain artifact. Four activities are to be performed during correspondence analysis:

Framework for V&V in Reuse-Based Software Engineering 10

• Map the application artifact to the corresponding domain artifact.

• Ensure that the application artifact has not been modified from the domain artifact without

proper documentation.

• Ensure that the application artifact is a correct instantiation of the domain artifact.

• Obtain information on testing and analysis on a domain artifact to aid in V&V planning for

the application artifact.

Correspondence analysis is performed between the corresponding phases of the domain

engineering and application engineering life-cycles. The system specification for any system

within the domain should correspond to the domain model. The system specification could

involve instantiating, parameterizing, or simply satisfying the requirements expressed in the

domain model. Any system-unique requirements should be explicit, and the rationale for not

addressing these system-unique requirements within the domain model should be stated.

Although some degree of correspondence analysis should be at least implicitly performed for all

systems developed in accordance with the domain architecture, more care should be taken for

systems with critical functions and for their critical areas of software.

The system architecture is analyzed to ensure that it satisfies the requirements specified in

the domain architecture. Any variations should be documented along with the reason for the

variation. The rationale for parameters chosen or options selected in constructing the system
architecture from the domain architecture should be recorded.

The system components are analyzed to ensure correspondence to domain components.

Again, variations, parameters, and options should be recorded along with their rationale.

Baseline testing might be appropriate in order to compare variants of a domain component.

6. COMMUNICATING RESULTS

Communicating V&V work products and results is vital to avoiding the repetition of

V&V tasks and to ensuring that potential reusers can properly assess the status of reusable

components. V&V work products and results should be associated with the component and

made available to domain and application engineers. In some cases, V&V efforts might be

directed at a grouping of components rather than at an individual component, and this

information should also be available. Groupings might include components that are expected to

occur together in several applications, or might include variants of one domain artifact.

The information on similar components within the domain should be consistent in content

and format, in order to allow the information to be easily used by both domain engineers and

application engineers. The information that should be communicated include the following:

• V&V Planning Decisions and Rationale

• V&V Analysis Activities

• V&V Test Cases and Procedures

• V&V Results and Findings

Framework for V&V in Reuse-Based Software Engineering 11

7. V&V OF DOMAIN ARTIFACTS

This paper focuses on the issue of V&V within domain engineering, in the situation

where the final systems would be subject to V&V even if the systems were not developed within

a reuse environment. Many of the same justifications for performing V&V in a product line that

includes critical systems also apply to V&V of general purpose reusable components. These

general purpose components include domain artifacts for systems that are not critical, as well as

reusable components that are developed for general usage rather than for a specific product line.

The Component Verification, Validation and Certification Working Group at WlSR 8

found four considerations that should be used in determining the level of V&V of reusable

components [Edwards and Wiede 1997]:

• Span of application - the number of components or systems that depend on the

component

• Criticality - potential impact due to a fault in the component

• Marketability - degree to which a component would be more likely to be reused by a

third party

• Lifetime - length of time that a component will be used

The domain architecture serves as the context for evaluating software components in a

product-line environment. However, this architecture may not exist for general use components.

The Working Group determined that the concept of validation was different for a general use

component than for a component developed for a specific system or product line. In the latter

case, validation refers to ensuring that the component meets the needs of the customer. A

general use component has not one customer, but many customers, who are software developers

rather then end-users. Hence validation of a general use component should involve the assurance

(and supporting documentation) that the component satisfies a wide range of alternative usages,

rather than the specific needs of a particular end-user.

8. RELATED WORK

Although work is lacking specifically in the area of V&V as applied to reuse-based

software engineering, there is related work that is applicable to some of the tasks within the

framework. Component certification was discussed in a previous section, and this work is

certainly applicable (although not sufficient) for V&V activity at the domain level. The analysis

of architectures is the focus of attention and discussion [Tracz 1996, Garlan 1995], but there is

not as yet consensus on methods and approaches. One of the approaches being researched is a

scenario-based analysis approach, Software Architecture Analysis Method [Kazman et al. 1995].

In the area of correspondence tasks, the Centre for Requirements and Foundations at Oxford is

developing a tool (TOOR) to support tracing dependencies among evolving objects [Goguen

1996].

Framework for V&V in Reuse-Based Software Engineering 12

9. CONCLUSION

The framework for performing V&V in traditional application system development can

be extended to reuse-based software engineering. The extended framework allows the V&V

effort to be amortized over the systems within the domain or product line. Just as with V&V in

application system development, V&V should be performed as part of an overall risk mitigation

strategy within the domain or product line.

The primary motivation for V&V within domain engineering is to find and correct errors

in the domain artifact in order to prevent the errors from being propagated to the application

systems. This motivation is especially strong where the application systems perform critical

functions. Even if there are no critical functions performed by the systems within the domain,

V&V might be appropriate for a component that has the potential to be used in a large number of

application systems.

ACKNOWLEDGEMENT

This work is funded by NASA Cooperative Agreement NCC 2-979 at the NASA/Ames

IV&V Facility in Fairmont, WV.

REFERENCES

Addy, Edward A. (1996), "V&V Within Reuse-Based Software Engineering", Proceedings for

the Fifth Annual Workshop on Software Reuse Education and Training, Reuse '96,

http:l/www.asset.com/W SRD/conferenceslproceedingslresults/addy/addy.html.

Armitage, James W. (1993), "Process Guide for the DSSA Process Life Cycle", DSSA-PG-001,

Software Engineering Institute Software Process Definition Project, Pittsburgh, PA

Duke, Eugene, L. (1989), "V&V of Flight and Mission-Critical Software", IEEE Software, 6, 3,
39-45.

Dunn, Michael F. and John C. Knight (1993), "Certification of Reusable Software Parts,"

Technical Report CS-93-41, University of Virginia, Charlottesville, VA.

Edwards, Stephen H. and Bruce W. Wiede (1997), "WlSR8:8 th Annual Workshop on SW

Reuse", Software Engineering Notes, 22, 5, 17-32.

Garlan, David (1995), "First International Workshop on Architectures for Software Systems

Workshop Summary", Software Engineering Notes, 20, 3, 84-89.

Goguen, Joseph A. (1996), "Parameterized Programming and Software Architecture," In

Proceedings of the Fourth International Conference on Software Reuse, IEEE Computer Society

Press, Los Alamitos, CA, pp. 2-10.

Framework for V&V in Reuse-Based Software Engineering 13

Katz, Susan,ChristopherDabrowski,Kathryn Miles and MargaretLaw (1994), "Glossaryof
Software ReuseTerms," NIST SpecialPublication 500-222,Computer SystemsLaboratory,
National Instituteof StandardsandTechnology,Gaithersburg,MD.

IEEE STD 610.12-1990,IEEE StandardGlossaryof Software Engineering Technology, Institute

of Electrical and Electronics Engineers, Inc., New York, NY.

IEEE STD 1012-1986 (R 1992), IEEE Standard for Software Verification and Validation Plans,

Institute of Electrical and Electronics Engineers, Inc., New York, NY.

IEEE STD 1059-t993, IEEE Guide for Software Verification and Validation Plans, Institute of

Electrical and Electronics, Inc., New York, NY.

Kazman, Rick, Gregory Abowd, Len Bass, and Paul Clements, "Scenario-Based Analysis of

Software Architecture," IEEE Software, 13, 6, 47-55.

Lewis, Robert O. (1992), Independent Verification and Validation, A Life Cycle Engineering

Process for Quality Software, John Wiley & Sons, New York, NY.

Makowsky, Lawrence C. (1992), "A Guide to Independent Verification and Validation of

Computer Software," USA-BRDEC-TR//2516, United States Army Belvoir Research,

Development and Engineering Center, Fort Belvoir, VA.

Poore, J.H., Theresa Pepin, Murali Sitaraman, and Frances L. Van Scoy (1992), "Criteria and

Implementation Procedures for Evaluating Reusable Software Engineering Assets," DTIC AD-

B 166803, prepared for IBM Corportation Federal Sectors Division, Gaithersburg, MD.

Software Productivity Solutions, Inc. (1996), "Certification of Reusable Software Components,

Volume 2 - Certification Framework," prepared for Rome Laboratory/C3CB, Griffiss AFB, NY.

Tracz, Will (1996), "Test and Analysis of Software Architectures," In Proceedings of the

Internatinal Symposium on Software Testing and Analysis (ISSTA '96), ACM Press, New York,

NY, pp 1-3.

Unisys, Valley Forge Engineering Center, and EWA, Inc. (1994), "Component Provider's and

Tool Developer's Handbook," STARS-VC-B017/001/00, prepared for Electronic Systems

Center, Air Force Material Command, USAF, Hanscom AFB, MA.

Wallace, Dolores R. and Roger U. Fujii (1989a), Software Verification and Validation: Its Role

in Computer Assurance and Its Relationship with Software Project Management Standards,"

NIST Special Publication 500-165, National Institute of Standards and Technology,

Gaithersburg, MD.

Wallace, Dolores R. and Roger U. Fujii (1989b), "Software Verification and Validation: An

Overview", IEEE Software, 6, 3, 10-17.

Framework for V&V in Reuse-Based Software Engineering 14

